Department of Histology and Embryology, P. J. Šafárik University, Medical Faculty, Košice Structure of the tooth: Sylabus for foreign students – Dental medicine Author: doc. MVDr. lveta Domoráková, PhD.

clinical

Function: to chew the food = MASTICATION, biggining of the digestive process

speech-sound

- in humans two sets of teeth:
 - 1. deciduous milk teeth (20)
 - 2. permanent adult teeth (32)
- anatomical parts: crown (corona dentis)

neck (cervix)

root (radix)

pulp cavity, root canal, apical foramen

Teeth are situated in the bone sockets (alveolus) in jaws:

(maxillar & mandibular bones)

BASIC STRUCTURES:

a. hard tissues - enamel, dentin, cementum

higly mineralized tissues

- b. <u>soft tissue</u> tooth pulp
- c. supporting tissues: periodontal ligaments, gingiva, alveolar bone

Tooth – basic structure

Histological preparation of tooth

1. Thin sections technique: Organic matrix is removed, only inorganic remains, thereafter tooth is cut into a thin slices.

2. Decalcification – calcified matrix is removed, organic component is preserved, than cut & stained

I. Hard tissues of the tooth: enamel, dentine, cementum

ENAMEL

- ECTODERMAL ORIGIN
- covers surface of the crown
- produced by ameloblasts

PHYSICAL PROPERTIES of the ENAMEL

The hardest tissue, resistent to abrasion

Thickness:

- at the edges and cusps 2,5 mm
- neck region, lateral surfaces of the crown 1,3 mm

Enamel is synthesized only during development does not regenerate

Color of enamel:

- young teeth bluish white
- adult teeth more transparent enamel, colour of dentine is visible - yellowish

Superficial enamel undergoes higher mechanical stresses, therefore is:

- harder
- less porous
- contains more of fluorides

CHEMICAL PROPERTIES of the ENAMEL

- 1. Inorganic component: 95 96%
 - calcification of enamel matrix only during development of tooth !

MINERAL SALTS – milions of <u>hydroxyapatite crystallites</u> of hexagonal shape form enamel prisms

- 2. Organic component in matured enamel: 1-2%
 - is produced by ameloblasts only during development of tooth !

around the prism is non calcified organic matrix

Proteins:

amelogenins and enamelins (tuftelins, ameloblastins)

3. Water: 2%

H₂O is bind to material of crystals and in the organic matrix

Shape of the prisms and orientation:

- Type I. circular prisms
- Type II. paralel prisms
- Type III. keyhole prisms (head and tail)

more frequent

Microscopic structure of enamel prisms

Basic structural units of the enamel are enamel prisms

Prism is composed of millions of hydroxyapatite crystallites (diameter: 70x30 nm)

- crystallites are bigger than in the bone and dentine
- oriented paralel with long axis of the prism

Shape of the prisms

- polygonal, or keyhole
- 1. prisms run perpendicular to the enamel surface
- 2. paralel to each other
- 3. are continuous without interuption

on the cusps & ridges: lenght: 2,5 mm; width: 5 μ m

- surface of the prism is covered by prismatic
 membrane = nonmineralized enamel matrix
- prisms (rods*) are connected by <u>interprismatic</u>
 <u>substance</u> (interrod *) orientation of crystallites has different angle

Formation of enamel prisms is periodic (active – non active period of formation) visible in the enamel

like growing lines = incremental lines (Retzius lines; RL)

- traverse obliquely from dentine-enamel junction
- Enamel Striae of Retzius

- showed periods of enamel formation

Connection of ENAMEL – DENTIN

- > Arcuate connection in the places with high mechanical stress (ridges and cusps)
- > <u>Straight connection</u> on lateral surfaces of the crown

AMELOBLASTS

Function:

- produce enamel only during development of tooth
- > synthesis and secretion of enamel components

Microscopic structure:

tall columnar cells, connected by zonulla occludens

basal part of cell: mitochondria (Mi),

near the nucleus: rER, GA

apical surface:

- shorter Tomes' process contains secretory granules
- cytoskeleton

Dentine

- hard calcified tissue
- formes crown and root
- surrounds tooth cavity (pulp cavity)
- is produced by odontoblasts
- origin: ectomesenchymal

PHYSICAL PROPERTIES of the DENTINE

- yelowish color
- dentine is harder than the bone, softer than enamel

CHEMICAL PROPERTIES

- 70% inorganic matrix (hydroxyapatite)
 - dentinal crystallites of hydroxyapatite are flatenned,

and smaller than in enamel

20% organic matrix

- collagen type I (90%)
- amorphous ground substance (10%)

10% H₂O

ORIGIN of odontoblasts: ectomesenchymal

Odontoblasts produce dentine – synhesis and secretion of all dentinal components

Dentin: avascular

sensitive (sensitive nerve fibers enter the dentinal tubules)

Microscopic structure of the dentin

LM: parallel stripes = dentinal tubules eosinophilic staining (collagen type I)

ODONTOBLASTS:

Function: the cells forming and maintaining dentine

Location: at the border of dentinal pulp and dentine

active all of the life

- EM: ultrastructure of odontoblasts:
- cells are connected by tight junctions
- well developed rER, GA = protein synthesis (collagen type I)
- number of mitochondria
- secretory granules released through apical cytoplasm

Apical surface: odontoblasts have

long cytoplasmic processes Tomes fibers,

that run in the dentinal tubules in the entire dentine

odontoblasts

Dentin according the rate of mineralization

Predentine - non calcified **Dentine** - calcified

Peritubular dentine (A) – more calcified

Intertubular dentine (B) – less calcified than peritubular D

 \bullet at the border of dentine-cementum = <code>granular Tomes'layer</code> \rightarrow nonmineralized dentine

• at the border of dentine-enamel (crown) = <u>Czermak´s lacunae</u> \rightarrow nonmineralized dentine

Dentine according to the structural arrangement:

- a) Mantle dentine the outer layer of dentine in the crown
 - radial collagen fiber; less mineralized
 - dentinal tubules are branched
 - Tomes' fibers partially engaged in the enamel; contact of crystallites between enamel and dentine
- b) Circumpulpal dentine
 - rythmic secretion and mineralization; typical structure
- c) **Predentine** = nonmineralized dentine

Dentine according to the time period of production:

- (1) Primary dentine produced during development of the tooth
- (2) Secondary dentine dentine slowly created throughout the human life
- (3) Tertiary dentine reactive, non typical
 - created by a variety of exogenous stimuli: caries, attrition, pulp cavity preparation, trauma
 - have irregular dentinal tubules
 - > or no tubules

Fig. 2.6 Microphotograph showing hard tissue repair following a cavity preparation (arrow). The circle indicates bulk of new dentin being formed.

Cementum

thin layer of mineralized tissue on the outer root surface
covers dentine

Physical properties: yellowish color, softer than dentine

<u>Function</u>: connection of tooth to the alveolar bone by periodontal ligaments

Thiskness: cervix 10 – 15 µm

apex 50 – 200 μm

Three patterns of the cement - enamel junction:

- 1. Cementum overlaps enamel
- 2. Cementum and enamel meet
- 3. Cementum and enamel fail to meet; dentine betwen them is exposed

Chemical properties of cementum:

65% inorganic maatrix (hydroxyapatit, small, flattened crystallites: 8x55 nm) 23% organic matrix (collagen type I, sialoprotein) 12% H₂O

Histologically can be distinguished 2 types of cementum:

- (A) Acellular (primary) cementum (10 200 µm)
- (B) Cellular (secondary) cementum (500 µm)

Cementum is produced by cementoblasts

Mature cells inside the cementum are cementocytes (lacunae, canaliculi)

- acellular cementum covers the entire root surface by thin layer attached to the dentine
- cellular cementum is found at the apex of the root

periodontal

Cementum has no nerves \rightarrow is <u>non-sensitive</u> to pain !!!

Cellular/Secondary cementum:

- cementocytes with processes (A)
- border with dentine clearly demarcated
- incremental = growing lines (arrows)

II. SOFT TISSUES

Tooth pulp

- fills dental cavity
- very loose connective tissue important for dentine production

Cells of tooth pulp:

- Fixed pulpar fibroblasts
- Free cells: histiocytes, plasma cells, antigen-presenting cells, leukocytes

Border of the pulp cavity and dentine:

- odontoblasts
- subodontoblastic layer: capillaries + nerve plexus

Extracellular matrix:

- a) collagen type I and III
- b) amorphous ground substance

<u>GAG</u> (hyaluronic acid, dermatan sulphate, chondroitin sulphate), <u>structural gycoproteins</u> (fibronectin, laminin)

FUNCTION OF TOOTH PULP

- (1) Nutritive (blood vessels) and supporting function for tooth
- (2) Dentine production by odontoblasts
- (3) Innervation
- (4) Defens reactions macrophages, plasma cells, lymphocytes

III. Supporting tissues of the tooth

- 1. Periodontium periodontal ligaments
- 2. Gingiva gum
- 3. Alveolar bone tooth alveolus, tooth socket

Clinical terminology: Paradontium all the supporting tissues of tooth

Periodontium – periodontal ligaments

Function: strong and flexible connection of bone and tooth

- dense connective tissue situated between cementum and alveolar bone STRUCTURE:
- collagen type I fibers (over 90%), small amount of elastic fibers
- small amount of amorphous ground substance
- cells : fibroblasts, macrophages
- blood vessels, nerves

Orientation of collagen fibers in different regions of the periodontal ligaments:

- 1. Apical fibres
- 2. Oblique fibers
- 3. Horizontal fibers
- 4. Alveologingival fibres
- 5. Transseptal fibers
- 6. Transgingival fibers

GINGIVA - gum

Microscopic structure:

1- lamina epithelialis = stratified squamous epithelium

2- lamina propria = dense C.T.

(a) **free gingiva** (unattached) – bound the inner margin by **gingival sulcus (groove)**, which separates it from the tooth, bound on its outer margin by the oral cavity, and apically by the free gingival groove

(b) **attached gingiva –**, separated from alveolar mucosa by the **mucogingival junction (groove)**, attached to the tooth **junctional epithelium**

No submucosa

Junctional epithelium

- is attached to enamel by internal basal lamina (BL) and to the connective tissue by external basal lamina
- epithelial cells are attached to BL by hemidesmosomes

Gingiva - detail

A- attached gingiva, B- alveolar mucosa, C- submucosa associated alveolar mucosa, D- free gingiva, E- free gingival groove, F- gingival margin, G- gingival sulcus, H - junctional epithelium

Tooth alveolus (socket)

- the part of the maxilla or manible that supports and protects the teeth
- compact lamellar bone (lamina dura*)
- spongy bone between compact alveolar bone
- the compact layer of bone has numerous **vascular canals** (Volkmann's canals)
- Sharpye's fibers originating in the periodontal ligament

★Lamina dura